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I. INTRODUCTION
I.A. BACKGROUND AND SCOPE

This dccument summarizes the activities carried
out by the MSFC Preliminary Design Office as part of the NASA
assessment of a spaceborne doppler lidar wind measuring sys-
" tem concept. The assessment was requested by Dr. Ron
Greenwood, Director of the Environmental Observation
Division, Office of Space and Terrestrial Applications, of
NASA Headquarters, who designated MSFC as the lead center, to
be supported by JPL, LaRC, and GSFC in selected disciplines
augmenting MSFC's experience in ground and airborne pulsed
CO3 doppler lidar wind measuring systems.

The assessment activity was organized to
concentrate on three areas vital to concept feasibility:

o} Laser and optical systems (Lidar syscem
hardware)

o Atmospheric characteristics

o Spacecraft Accommodations

with corresponding assignments of responsibilities to the
MSFC Optical and RF Systems Division, Atmospheric Sciences
Division, and Preliminary Design Office. Overall assessment
coordination was provided by the MSFC Aadvanced Studies
Office.

The system concept wunder consideration was
defined in three reports:

1) "Feasibility Study of Satellite - Borne Lidar Global
Wind Monitoring System", NOAA Tech. Memo ERL WPL-37
(1978)

2) "Feasibility Study of Satellite - Borne Lidar Global
Wind Monitoring System, Part II", NOAA Tech. Memo ERL
WPL-63 (1980)

3) NOAA LMSC WINDSAT Study, Final Briefing Charts (Sep
1980) Contract NA 79 RAC 00127

The LMSC study was managed by the NOAA Environmental
Resources Laboratory and funded by the USAF Space Division.
All three studies emphasized a Shuttle-borne system, which
was considered an evolutionary step in the development of an
operational system.




A "clean sheet" approach to spacecraft concep-
tual design was taken to provide the greatest flexibility in
accommodating the mission equipment requirements. This
seemed particularly appropriate in view of the electrical
power requirements, which would require significant modifica-
tion of existing spacecraft. Pigure I.A-1 is an artist's
concept of the operational system.

I.B. ACCOMMODATIONS ASSESSMENT CONCLUSIONS/
RECOMMENDATIONS

Subject to the three caveats following, the
principal conclusion of this assessment is that a spacecraft
with the capabilities needed to support the operation of the
doppler lidar wind measuring system is technically feasible.
Cost estimates prepared for a dedicated, new-development
spacecraft (using standard, available, and/or existing tech-
nology components) suggest economic feasibility of such a
spacecraft. Such a new development may be unnecessary: the
present assessment did not include detailed consideration of
the potential use of existing and "in-development" spacecraft
and platforms. The caveats are that

1) cryogenic cooling of the photodetector will not
be required in the operational system,

2) detailed structural/pointing analyses will es-
tablish feasibility of short-term optical axis
stability for efficient lidar heterodyning, and

3) laser power requirements will not increase
beyond those now anticipated by more than a
factor of three.

The structural and pointing specialists consulted were of the
opinion that an acceptable short-term stability could be
realized, but that proof of their opinion would require
analyses beyond the scope of the assessment. The laser power
requirements are a critical design driver: the spacecraft
conceptualized in this assessment will not be adequate if the
laser power requirement increases much beyond the assumed
range of 2140-2340 W. Since the laser power requirement is
most particularly determined by atmospheric backscatter,
better knowledge of this parameter is required to adequately
scope the spacecraft definition activity.

The uncertainty relative to atmospheric back-
scatter, together with the need for demonstration of adequate
laser lifetime and chirp (intra-pulse frequency stability)
characteristics, were key considerations in the formulation
of the schedule recommendation shown in Figure I.B-l. In
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particular, a phased hardware development program should be
initiated after technology studies yield adequate definition
of system requirements.

System studies should continue at an appropriate
level to provide guidance to the technology studies and to
evolve system requirements. The needs for ground truthing
and observations of localized meterological phenomena should
be defined as early as possible, as thesz2 needs mayv become
d:sign drivers.

I.C MISSION OBJECTIVES: WIND MEASUREMENT NEEDS

The ultimate objective is that of improving the
accuracy of weather forecasting, particularly numerical fore-
casting. A spaceborne doppler 1lidar wind measuring system
will contribute to this end by providing direct measurement
of wird profiles. Two mission objectives have been identi-
fied through discussions with NOAA, USAF, and NASA
personnel.

Objective I : Provide frequent, accurate, and exten-
sive measurements

Objective II: Provide intensive iocal observations
The second objective is reguired to some extent
for ground truthing; apart from this, a desirable aim is the
observation of localized meteorological phenomena.

Table I.C.l1 provides seven goals which may be
used to quantify the mission objectives.

10



TABLE I.C.1 MISSION OBJECTIVES/GOALS

GOAL OBJECTIVE I OBJECTIVE II
QUANTIFICATION QUANTIFICATION

1. OBSERVATION INTERVAL 3-12 HRS ON DEMAND-?
2. AREAL COVERAGE TROPICS~-GLOBAL TEMP~GLOBAL
3. VERTICAL RANGE 10-20 KM UNSPECIFIED
4. RESOLUTION, VERTICAL 1 KM UNSPECIFIED
5. RESOLUTION, HORIZONTAL 100~500 KM 10 KM

6. ACCURACY: SPEED 1-2 M/S UNSPECIFIED
7. ACCURACY: DIRECTION + 10 DEG UNSPECIFIED

The first goal relates to the frequency with
which the wind fields are updated, and this, in turn, deter-
mines the number of spacecraft in the operational system. To
visualize this, imagine a single Lidar spacecraft in a polar
orbit, being over a point X on the equator at local dawn.
Twelve hours later this point will be beneath the spacecraft
if it has completed a half-integral number of orbital revolu-
tions - and the winds at point X will be observed again. For
this situation, the first physically realizable solution
occurs at 7.5 revolutions per half-day, corresponding to an
orbital altitude of 570 KM. A lesser number of half-integer
Sevolutiors p2r half-day would require a spacecraft altitude
exceeding 1200 KM, where STS performance limitations, Van
Allen belt radiation and the strength of the returning Lidar
pulse become expensive design drivers. If a second space-
craft is now placed in a polar orbit at the same altitude,
oriented and phased to cause the spacecraft to pass over the
point X at local noon, then the system of two spacecraft can
update the winds at a point X every six hours. Similarly,
three spacecraft are required to update at four hour inter-
vals, six are required for three hour updates, and so on.

The second goal, coverage, describes the portion
of the Earth's surface over which winds are to be measured.
To ensure that winds are measured at all points around the
equator- according to the observation interval chosen, eacn
spacecraft must measure winds along a swath extending some
distance to either side of its ground track. To deduce the
total swath width, consider again the case of a single space-
craft in a polar orbit, and not let point X be at the western
edge of the measurement swath. It is easy to see that
measurement of winds along the equator will be complete if
the point X is on the eastern edge of the swath one orbital

11
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period later. Using the orbital period already calculated,
the tota) swath width is readily shown to b- about 2700 KM,
Note that this value results from assuming that there are no
measurement gaps along the equator, and so is independent of
the observation interval. Further note that, although winds
along the equator are measured exactly once during the obser-
vation interval, winds in the temperate and artic regions are
measured more frequently due to the overlapping measurement
swaths in these zones. In this connection, there is a cir-
cumstance which may be expected to figure in any future
doppler lidar wind measurement system trade studies: tropi-
cal winds cannot be deduced reliably from temperature and
pressure measurements owing to the sm '1 gradients of these
parameters in the tropics. Elsewhere, direct wind measure-
ments can improve on present methods. In the polar zones,
above a few kilometers, the signal-to-noise ratio (SNR) of
the returning lidar pulse is less than at other latitudes,
which tends to reduce the attainable accuracy. However, the
overlapping swaths just described provide more measurements,
and this slightly offsets the accuracy reduction.

The third and fourth goals, vertical range and
resolution, relate to the altitudes to which, and vertical
spacings at which, winds can be measured. A 1 KM vertical
resolution means that the average horizontal wind i3 to be
estimated in each 1 KM "siab", up to the vertical range. The
vertical resolution is limited by the lidar pulse length, the
"least reasonably conceiveable value" being about 400 KM
(this does not suggest that so fine a vertical resolution is
economically attainable, or even meteorologically useful).
The strength of the returnirg lidar pulse depends on the
backscatter from atmospheric aerosols-whose concentration
must ultimately decrease with altitude and vary with geo-
graphic location, season, time of day, and occurrence of
aerosol-producing events (e.g., dust s*orms and volcanic
activity). This implies tliat the maximum altitude from which
useful returns will be obtained will vary with all these
factors. Thus, the lower figure of 10 KM given for the
vertical range should be taken as indicative of a need for
measurement of winds up to the tropopause (whose height
varies with season and 1latitude), while the upper figure
suggests the utility of stratospheric wind measurements.

12




The fifth goal, horizontal resolution, derives
from two circumstances. First, present numerical weath=ar
models operate with geographic grids in which the mean wind
over the grid (in each vertical resolution element) is used.
Second, only the radial compcnent of wind along the 1lidar
pointing direction can be measured from each pulse (again, in
each vertical resolution element). Thus, it is necessary to
direct several lidar pulses at a given geographical area,
from different directions, to estimate the mean wind by
vector resolution. The area, or grid, is usually taken to be
square, and the horizontal resolution is the length of the
grid side. The lower figure of 100 KM would be representa-
tive of small area (fine mesh) modeling. The upper figure of
500 KM would be associated with hemispheric or global model-
ing. This discussion implies that the flow of data from a
doppler lidar wind-measuring spacecraft is not well matched
to conventional large-area numerical forecasting models whose
world- view requires regular grids and synoptic measurements.
This mis-match poses no insurmountable mathematical or physi-
cal problem, but does indicate the need for model -“evelop-
ments to effectively exploit the wind data. The relationship
of the data produced and the using models should be factored
into future systems engineering studies.

The sixth and seventh goals, accuracies, de-
scribe the accuracy with which mean grid winds are to be
measured. The values given are slightly more stringent than
the accuracies attained when winds are calculated from tem-
perature and pressure measurements.

As noted at the start of this Section, a space-
borne doppler lidar is expected to improve numerical weather
forecasting by providing direct wind measurements on a global
scale. It seems likely that the flow of data from such a
system, with some additional ground and/or onboard process-
ing, would permit inference of other atmospheric dynamic
parameters (e.g., cloud cover characteristics). The informa-
tion so gained would not only enhance the contribution to
forecasting, but also serve to advance understanding of
atmospheric processes. This assessment has focused on the
practicability of, and requirements for, accommodating a
lidar system on a free-flying operational spacecraft, with
some limited consideration of other accommodations possibili-~
ties. Not addressed was the possibility of accommodating
additional meteorological sensors which, operated in conjunc-
tion with a doppler lidar, would provide an even greater
contribution to the ultimate objective and, possibly, under-
standing of atmospheric processes. Both possibilities-fuller
exploitation of doppler lidar data and ccmplementary sensors
- should be considered in future studies.

13



Certain simplifying assumptions were made above
to illustrate the concepts of fleet sizing and swath widths.
The precise assumptions (e.g., polar orbits) and parameters
based thereon (e.g., 570 KM orbital altitude) are not neces-
sarily required in practice. The conclusions about the
required fleet size remain valid.

I.D. MISSION TECHNIQUE: PRINCIPLES OF WIND
MEASUREMENT

The word "lidar" was originally an acronym for
"Light Detection and Ranging" - i.e., a lidar is a radar
operating at optical frequencies. In the system under con-
sideration, a pulse of light of a few microseconds duration,
at an essentially constant frequency, is directed at a
geographically-fixed volume of the atmosphere. Particles
(aerosols) in the volume reflect (backscatter) a portion of
the pulse energy back along the direction of propagation of
the pulse. This energy is collected at the system and its
frequency compared to the frequency of the emitted pulse by
optical heterodyning. The relative velocity between the
system and the aerosols (or, more precisely, the relative
velocity component along the direction of propagation) is
defined by the frequency difference, caused by the doppler
effect.

The motion of the Earth in inertial space is
calculable, and the motion of the spaceborne lidar system can
be determined by use of the global positioning system (GPS).
The attitude of the spacecraft will be maintained by the
onboard inertial reference subsystem. With this iaformation
and knowledge of the beam pointing direction, the doppler
frequency shift due to spacecraft-Earth motion can be
factored out of the total shift, with a remainder due only to
the component of aerosol motion along the beam pointing
direction. If the aerosols are assumed to move with the
wind, then the component of wind motion along the beam point-
ing direction has been determined. 1If the wind field in the
atmospheric volume is uniform, then directing several pulses
into the volume from different points on the orbit permits
determination of the wind components by vector resolution
along the different beam pointing directions. Although the
assumption of wind field uniformity over the atmospheric
volume does not always hold, particularly when the volume
corresponds to the larger horizontal resoluticn elements, the
nonuniformity does not compromise the concept, as only the
mean wind in the volume is sought. In the usual case, it may
also be assumed that vertical winds are negligible: the ex-
ceptions are generally localized and/or transient phenomena.

14
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Figure I.D.1l, adapted from the NOAA/LMSC WINDSAT
final briefing package, illustrates a doppler 1lidar wind-
measuring system concept. The primary "TEA" (Transversely
Excited, Atmospheric)laser output pulses are reflected by an
optomechanical switch in the "transmit"™ positon through a
beam alignment subsystem consisting of a fold mirror, a two-
axis gimbaled mirror, and a LAC (Lag Angle Compensating)
mirror. The pulse is then reflected from the tertiary mirror
into the cassegrainian telescope, which expands the beam and
directs it at the atmosphere. The pointing direction in this
concept is controlled by rotating the telescope about the
local vertical at an offset scan angle. In principle, this
rotation can be either countinuous or stepped.

The returning pulse of backscattered light is
collected by the cassegrainian telescope and reflected by the
tertiary mirror through the beam alignment subsystem. which
directs it through the "receive" position of the switch. The
beam alignment subsystem corrects the misalignment due to
Bradley abberation caused by the spacecraft motion and, if
the rotation is continuous, for the rotation of the telescope
(lag angle) during the pulse roundtrip time (typically be-
tween 5 and 10 milliseconds). After passing through
the switch, the returning light is mixed with a frequency-
offset beam from a local oscillator laser by a combining
beamsplitter. The offset permits the sense of the doppler
shift (red or blue) to be determined. The frequencies of
both the local oscillator and the TEA laser are controlled by
the technique of injection locking.

The mixed light from the combining beam-splitter
forms an interference pattern on the photo-detector. This
pattern varies with the doppler-shifted frequency of the re-
turning light. Thus, the detector output is an FM-modulated
electrical signil whose modulation frequency corresponds to
the doppler shift. The predictable shift due to the
spacecraft-Earth moti~n will vary by about +1.7 GHz, depend-
ing on whether the beam pointing direction is along or
against the spacecraft velocity vector. The function of the
frequency synthesizer is the removal of this "gross" doppler
shift. The resulting signal is then digitized and range-
gated (corresponding to the vertical resolution elements)
and, after further preprocessing to extract signal character-
istics, recorded for later downlinking.
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II.

SYSTEM PERFORMANCE ANALYSIS
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II.A. SIGNAL-TO-NOISE RATIO

As noted in Section I.C., a primary system perfor-
mance goal is wind speed measurement accuracy. It is intui-
tively reasonable that this will improve with increasing
values of the signal-to-noise ratio (SNR) of the return
pulse. Further, it is reasonable to expect an expression for
the SNR of the return from a volume of atmosphere to contain
terms involving 1) the output pulse characteristics (energy,
duration, and wavelength), 2) atmospheric effects (backscat-
ter, attenuation, and turbulence) and 3) geometry of the
collecting optics.

The wind measurement accuracy analyses of WPL-63
are based upon the expression

2
SNR = —= JAT - éZ/AR 1 &2 D KD#D' R\2
e R (H 2.)4 73\’)(" 7)
where a
h = Planck's ccnstant
J = pulse energy
) = doppler-shifted wavelength
T = pulse duration
/? = atmospheric backscatter coefficient
A = atmospheric attenuation coefficient
R = range from spacecraft to atmospheric volume
7 = overall detector-optics efficiency
D = telescope diameter
§ = turbulence-induced transverse coherence radius
= 0.069 \8/5 (rc2)-3/5
C: = refractive index structure parameter
f = focal length

In fact, the SNR should be written as a function of the alti-
tude from which the return occurs: letting

a = altitude of the sampled volume
Aa = vertical resolution
& = scan angle

18



4 = spacecraft altitude

8/C

range from spacecraft to altitude at scan angle

“2uR
The expression Ae is more accurately written as
___(_‘_:;Mda /6/7\ &). ex,b{—zf soe (Rx)a/R(":u; ’)}

where the form of the integral indicates that the attenuation
is evaluated along the line connecting the spacecraft and the
volume. A similar modification for the turbulence radius is
implied (cf. WPL-37, P.203!}.

For the present purpose of assessing the accom-
modations required for a wind measuring doppler lidar system,
a simpler form of the SNR expression will suffice, and the
following expression has been used:

SNR (&) = IXT][F(&) exP{ ZS A(I)JR(etslc,oL,l)}.‘ 7[R“|y¢°‘ - Q)

Figure II.A-1 displays the result of one calculation using
this expression. The assumptions relative to atmospheric
attenuation and backscatter are discussed in the next
section.

II.B. ATMOSPHERIC UNCERTAINTIES

Ultimately, the feasibility of accommodating the
proposed wind-measuring system will depend on atmospheric
properties, particularly attenuation and backscatter. The
total attenuation can be expected to be only slightly greater
than the molecular absorption, particularly above about 7 KM.
Figure II.B-1 plots the molecular absorption coefficient at
the 9.11454 wavelength for the AFGL model atmospheres. Al-
though the absorption at a specific altitude and place will
vary with time-cf-day, season, and weather, the vari- ability
is reasonably well bounded. The form of the attenuation term
in the SNR expression implies that long light paths through
the atmosphere should be avoided.

The uncertainty associated with the backscatter
is much less well understood. Figure I1I.B-2 is a compendium
of backscatter estimates from various wavelengths other than
the cnes of interest, with considerable reliance on the aero-
sol size distribution models. 1In this report, calculations
have been based on the assumed "worst case" curve. The pre-
sence of Lidar returns does indicate the basic feasibility of
the doppler lidar wind measuring technique.

)

19

o



wy ‘3aNLILTV Q3 TINYS
st oL
1

A 1 1 L

ISV LSHOM D4SIN = HILLVISHOVE
NOILJHOSBY 1vI1d0OYL 194V = NOILVNNILLY
(W OHIIN) SPLL'6 = HLONITIAVM

{W) SZ°L = H3L3WVIA SIILdO

{930) £5 = NOILVNITONI TV11840

(WX) 059 = 3ANLILTY TV1IEHO

JANLILTY "SA Ollvd ISION-OL-TVNIIS
1-v 'II 3N

oL

qP ‘UNS

B s i 3

20




Clearly, an operational system will not be able
to measure winds at all altitudes, at all times: clouds are
one inhibiting factor, and there will be occasions when the
concentrations of aerosols in some regions and at some alti-
tudes will be insufficient to provide a useful return signal.
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III. CONFIGURATION AND MASS PROPERTIES
III.A. REQUIREMENTS AND ASSUMPTIONS

The following assumptions and requirements
determined the configuration design approach

(1) Beam pointing shall be realized by a
scanning Cassegrainian telescope with
a maximum diameter of 1.2% m. The
scanning axis shall be aligned with
the local vertical, and the optical
axis of the telescope shall be cifset
by approximately 56 deg (the scan
angle). The scan rate shal. be
approximately 4 rpm.

(ii) The Shuttle shall be the: aunch
vehicle, and the spacecraft :'~.1 be
retrievable

(iii) There shall be two solar array wings
of approximately 28m?2 individual
area, capable of both deployment and
retraction.

(iv) There shall  be two deployable/
retractable radiators (both sides
active) with total area of approxi-
mately 5.7m2

The mission equipment (laser, scan mechanism, and telescope)
was assumed to be similar to the continuously scanning, one-
meter, Cassegrainian configuration reported in the NOAA/LMSC
WINDSAT Final Briefing Charts: a fritted glass mirror was
assumed rather than the Beryllium mirror recommended by
LMSC.

ITII.B. CONCEPTUAL DESIGN

Figure III.A-1] illustrates the features of
the conceptual configuration, as it would be stowed in the
orbiter cargo bay. The cylindrical spacecraft has the maxi-
mum diameter compatible with the orbiter cargo bar dynamic
envelope and a height of 1.5 m. The resulting internal
volume easily accommodates the mission and subsystems equip-
ment, as determined by a trial layout. This "pancake" con-
figuration is the result of a natural tendency to effectively
utilize the cargo bay volume: it does not, in this instance,
result from the present commercial payload STS charge policy.
The driving cost factor under this policy according to per-
formance calculations, would be the weight delivered to orbit
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rather than payload length. The antenna feed horn is stowed
in the body of the spacecraft when the antenna is retracted:
a foldable horn could also be used to minimize the stowed
payload length.

The keel and sill fittings attach to the payload
primary structure, obviating the need for a separate launch
cradle. This integration of the 1launch cradle .n_.o the
spacecraft is not only programmatically simpler, it also
minimizes the total payload- chargable cargc mass. In doing
so, it permits consideration of direct delivery to orbit (at
57 deg) without use of an upper stage or an integral propul-
sion system for orbital transfer (at least one, and likely
two, orbiter OMS kits would be required ctherwise). This is
not to suggest that this will ultimately be the preferred
approach, only that this is one option. The sill fittings
are spaced 59 inches apart (as on a standard ESA pallet) to
provide the maximum number of possible attach positions in
the cargo bay. 2 grapple fixture (not shown) is provided to
allow deployment/ retrieval using a remote manipulator arm.

The telescope, radiators, and £folded solar
arrays are mounted on one flat side of the "pancake" space-
craft and secured by launch locks. The radiators rotate 180
deg during deployment into the position illustrated in the
artists' concept in Figure I.A-l1. Similarly, the solar array
wings are mounted on short arms and rotate 180 deg about the
illustrated hinge points before unfolding to their opera-
tional position. The antenna is mounted on the remaining
flat side of the spacecraft.

III.C. vYSTEM SIZING

Subsystem and spacecraft mass estimates are
given in the following Table: these masses are based on the
mission equipment masses taken from the NOAA/LMSC WINDEAT
Study Final Briefing Charts, subsystem mass estimates, and
the assumption of an all- aluminum spacecraft structure.
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TABLE III.C-1
DOPPLER LIDAR WIND MEASURING SYSTEM
PAYLOAD MASS SUMMARY
LIDAR MISSION EQUIPMENT
STRUCTURE
ATTITUDE CONTROL AND DETERMINATION

COMMUNICATIONS AND DATA MANAGEMENT
ELECTRICAL POWER

THERMAL CONTROL

28

610 Kg
500
150

80
820

90

2260
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IV.A. EI.ECTRICAL POWER SUBSYSTEM
Iv.A.l REQUIREMENTS AND ASSUMPTIONS

Conceptual design and analysis of the electrical
power snksystem requires definition of the loads (power and
voltage), orbit (altitude and inclination), and mission fac-
tors such as mission duration and spacecraft pointing.

For the doppler 1lidar wind measuring system
spacecraft, the loads were estimated as:

Cuidance and Navigtion 227 - 247 W
Communications and Data Management 110 - 115 W
Thermal Control 360 W
Mission Equipment 2140 - 2346 W
Totals 2827 - 3068 W

The subsystem estimates are based on representa-
tive equipment selections by subsystem engineers. The ther-
mal control power requirement is highly conservative, being
based on the startup power for a gas pump. The mission
equipment power estimates were taken from the September 1980
NOAA/IMSC WINDSAT Final Briefing Charts.

A design margin of 15-25% is customary in pre-
liminary design activity to allow for uncertainties which
almost invariably lead to growth in power requirements as thz
design matures. Using 3500 W as the total electrical power
requirement yields a 24% and a 14% margin relative to the low
and high estimates, respectively, of the last parayraph. On
balance, this estimate is slightly more conservative than
usual. The EPS design is not sensitive to small departures
trom this value, whose adoption obviates the unenlightening
production of many tables and equipment 1lists tailored to
minor differences in the .ases corsidere:.

The choice of orbit has two primary effects upon
EPS Gesign: first, the solar array and battery system must
be sized to supply exlipse loads; secound, the altitude, in-
clination, and launch date (within the solar cycle) affect

" the particulate radiation, which degrades the solar array. A

lower orbit gives a lower light/ dark ratio (requiring a lar-
ger array and battery system) whereas a higher orbit yields
greater radiation damage due to geomagnetically trapped
particles. For this study, a three—-year mission coinciding
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with a peak period of solar activity was assumed, so
that flare protons were a major contributor to the array
degradation.

Five orbits were analyzed to scope the character-
istics of a conceptual EPS design:

ORBIT ALTITUDE INCLINATION NCDE
L (km} (deq} (hr)
1l 800 sun-synch 0600
2 650 sun-synch 0600
3 800 sun-synch 1200
4 800 57 any
5 500 57 any

The first and third of these represent the best-
and worst-cases, respectively, for a high-inclination, 800 km
orbit (as per the NOAA WPL-37 and -63 reports). The 0600
node maximizes the day/night ratio (yielding the "minimum"
EPS) while the 1200 node has the opposite effect. The second
orvit was analyzed to assess the sensitivity of the EPS to
orbital altitude at the most favorable nodal position. The
fourth a-d fifth orbits were analyzed to bound the EPS char-
acterist_cs in orbits potentially accessible from KSC: nodal
position is not an EPS driver at the 57 deg inclination.,

IV.A.2. CONCEPTUAL DESIGN

The relatively large power requirement of 3500 W
and the local vertical orientation of the telescope scan axis
necessitates an oriented (sun-tracking) solar ar:ray. Two
rotational degrees of freedom are used to maximize the array
output: roll about the scan axis and rotation of the solar
arrays. The first of these is ccmpatible with the need to
minimize the sunlight incident on the radiators. Rotation of
the solar arrays implies use of solar array drive mechanisms
and nrower transfer devices (such as slip rings or flex
cables). These solar array components have been developed
for many programs, and there is ample experience for the
present application.

A variety of power distribution and control
schemes are possible: the concept described here is not
necessarily optimum, but is adequate to provide estimates of
the realizable efficiencies, weights, and dimensions.
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Figure 1IV.A-1 illustrates the concept. Solar
array power is transferred via slip rings or flex cables to
the main power bus at a nominal 34 Vdc (varying with array
temperature). The power control unit (PCU) provides command,
control, and protection functions. During the daylight por-
tion of the orbit, the PCU routes solar array power to the
battery charge controllers (CCs) which provide a charge/
discharge path for the NiCd battery assemblies. The PCU also
routes power from the solar array (or battery, at night) to
the multiple load buses which, in turn, distribute power to
the various users. The load buses interface loads through
remotely located distributors which provide local switching,
isolation, and protective functions. Note that this distri-
bution scheme distributes unrequlated power at 22-34 dc
(depending on array temperature and battery state of charge).
The various loads must then provide their own power supplies
(dc-dc), which is nct true for a distributior scheme tailored
to the case where all loads require a specific, regqulated
(usually 28 Vvdc) source. In the presenrt application, the
lidar is the major power user, requiring high power, high
voltage supplies. The regulat=d bus approach would have the
disadvantage of regulating the power twice, yielding a lower
overall conversion efficiency.

Figure IV.A-1 indicates optional charge control-
lers and batteries. This reflects the different energy stor-
age requirements of the candidate orbits. An operational
system with several spacecraft at different nodes coulé have
a common power system with different energy ©storage
capacities.

Figiare IV.A-2 illustrates the solar array con-
cept, having two identical wings eguipped with deploy/retract
mechanisms and power transfer/drive mechanisms for sun orien-
tation and power transfer. Each wing consists of a number of
submodules for ease of manufacture, assembly, and launch.
The submodules are assemblies of solar cells, various termi-
nals, diodes, and harness wiring features. Some submodules
also incorporate thermal and current sensors for array diag-
nostics. Sun sensors on each wing provide the solar crienta-
tion signals needed by the solar array drive electronic
assembly mounted within the spacecraft.

Power and signals are routed to the spacecraft
by a "power system harness".

IV.A.3. SYSTEM SIZING

The first step in system sizing is the determi-
nation of the end-of-life solar array power requirement and
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energy storage capacity requirement. Apart from relatively
standard allowances for conversion and transmission efficien-
cies, the variation in the suntime fraction during the year
must be accounted for. This fraction is shown in figures
IV.A-3 and IV.A-4 as "percent time in sun" (PCTIS). For an
800 km, sun-synchronous, orbit with an 0600 hr node, Figure
IV.A-3 shows that the spacecraft is continuously in the sun
except for a period of about 75 days centered around the
summer solstice, when the minimum orbital suntime percent is
83.6%. In contrast, Figure IV.A-4 shows that a spacecraft in
an 800 km, 57 deg orbit is occulted on almost every orbital
revolution, frequently by as much as 35%. Figure 1IV.A-5
defines the end-of-life solar array power requirements
associated with the candidate orbits.

Figure IV.A-6 shows a cross-section of the solar
array, indicating the typical components of a lightweight,
rigid honeycomb core type panel. Detailed test data on high-
efficiency solar cells (from JPL) were used to select the
baseline solar cell and to establish the electrical and ther-
mal operating points (The cell conversion efficiency is
sensitive to the cell temperature: at high temperatures, the
voltage drops rapidly and, while the current increases
slightly, the next effect is decreased output power at the
operating point.). Application of estimated degradations due
to irradiation and thermal cycle and micrometeorite damage,
together with allowances for Earth orbit eccentricity,
assembly losses, interconnections, panel layout and accessory
components, yields an estimate of the beginning-of-life (BOL)
array output requirement. This estimate of the array size
also allows estimation of the total wire length/mass connect-
ing the array to the spacecraft. Figure IV.A-7 defines the
BOL power requirement for the various orbits considered.
Figure IV.A-8 defines the corresponding total EPS masses:
the primary differences are due to

(1) additional battery capacity for increased
night times, and

(2) additional solar array area to charge the
extra battery capacity.

IV.B COMMUNICATIONS AND DATA MANAGEMENT
Iv.B.1 DATA RATES
The maximum data rate requirements for the CDMS
can be derived straightforwardly by considering the temporal

and spectral characteristics of the doppler-shifted pulse
backscattered from the atmosphere.
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Figure IV.B-1(a) illustrates the t=mporal
characteristics, using representative numerical values taken
from the NOAA/LMSC study final presentation charts. A laser
pulse of about 5 us duration is transmitted from the space-
craft into the atmosphere, from which backscattering occurs
until the trailing edge of the emitted pulse reaches the sur-
face. Tbus, the duration of the return pulse is

2 AR + T
where N
AID = Atmospheric Interaction Distance
¢ = Speed of light
T =

Emitted pulse duration

or about 350‘ps for the parameters assumed in the NOAA/LMSC
study. This can be chopped into 20 "range bins" of 17.5 us
duration, each corresponding to a 1 km vertical resolution.

Figure IV.B-1l(b) illustrates the essentail
spectral characteristics. The greatest frequency shift is
due to the spacecraft motion relative to the Earth (about +
1.5 GHz, depending on whether the laser "firing direction" is
along or against the space craft motion). The doppler shift
due to a + 1 m/s wind is about 220 kHz - leading to a 44 MHz
bandwidth for measuring +100 m/s winds. The sampling rate is
then 88 MHz, or about 100 MHz. Based on the NOAA and LMSC
studies, a 4 bit quantization has been selected Thus, each
pulse generates 140 kbit of phase information. At B8 pulses
every second, this yields 1.12 Mbps of phase data. Quantiz-
ing the amplitude data at 10 bits, for each range bin, and at
a 1 MHz sample rate, yields an additional 30 kbps.

The total raw data rate is then about 1.15 Mbps.
Capability for downlinking this data is necessary, at least
initially, for evaluation and special studies. Operation-
ally, such a flood of data is neither necessary nor desir-
able, and some form of onboard preprocessing must be
considered.

At the extreme, this preprocessing mey reduce
the data for each range bin to three quantities indicative of
the radial component of the wind, the dispersion due to shear
and turbulence, and the signal strength. With an austere
allowanc . for data defining the orientation of each "shot"
relative to the Earth, 5 Kbps emerges as a lower limit for
the preprocessed data downlink rate.

These downlink data rates (raw and preprocessed)
could be halved if the number of range bins is halved (either
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FIGURE IV. B-1
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by halving the vertical range or increasing the vertical
resolution te 2 km). Conversely, if the quantization of
phase data were increased from 4 to 8 iits, the downlink
rates would be doubled.

IV.B.2. TDRSS UTILIZATION

Figure IV.B-2 illustrates the positioning of the
two geostationary TDRSS spacecraft. One consequence of this
positioning is the presence of a “dead zone"™ in which the
spacecraft will be out of contact with both TDRSS spacecraft.
Figure 1IV.B-3 depicts the geographic location and extent of
this dead zone for a spacecraft with an orbital altitude of
500 km. There are three categories of TDRSS service to be
considered:

o) Multiple Access (MA)
- Up to 20 users/TDRS
- Up to 50 kbps downlink rate

o S-band Single Access (SSA)

- Twc user/TDRS

- Up to 3 Mbps downlink rate
o Ku-band Single Access (KuSA)

- Two user/TDRS
- Up to 300 Mbps downlink rate

The multiple access service would 1limit the
system to transmission of data processed to less than 50 kbps
(less, to allow for houscekeeping, attitude, and position
data). Although the TDRSS operational modes have not been
fixed at this time, there is reason to believe that MA chan-
nels may not be available to a single user for years of
operation. The multiple access service does not provide a
useful capabilit- for transmission of unprocessed data.

The SSA service appears to be the preferred
service for this application: A limited amount of unprocess-
ed data can be downlinked in real time and processed data can
be handled with a store-and-dump mode using NASA standard
108 tape recorders. The principal issue relative to the
store-and-dump mode is tape recorder life, the m2in limits on
which are the numbers of tape &and negator spring reversals
(there being two of the latter for each of the former). The
recorder is designed for 20,000 tape passes and 50,000 spring
reversals. Twenty-eight transports have been flown, and have
accumulated 51,000 hours of operation without a major
failure. If the maximum recorder dump rate (2.5 Mbps) is
used - a parallel track dump - then parallel recording must
be used. Figure IV.B-4 describes the relationship between
the record rate and the recorder tape/negator spring life
limits for two cases: A single recorder and dual recorder

44
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operated in a flip - flop mode. Limiting the record rate to
no more than 50 kbps not only provides a 50% margin on tape
passes, but permits an alternate mode usable in the event of
tape recorder failure: processed data would be downlinked
continuously using MA service to the extent allowed by com-
peting traffic (while not in a dead zone).

The technical requirements of the doppler lidar
wind-measuring system are satisfied by the SSA service: this
is also the most economical approach, based on the current
"soft" TDRSS use charges (the charge rates used are not
official but are accepted figures for planning purposes).
For the MA service, assuming continuous telemetry of data
processed to less than 50 kbps, the three-year mission use
charge would come to $6.57 M. In contrast, the corresponding
use charge for SSA with a store-and-dump mode at a 50 kbps
record rate / 2.5 Mbps dump rate is $2.63 M. The S-band
communication equipment is the same in either case, and three
NASA standard recorders at approximately $500 K each are
required for the SSA mode (two to ensure no loss of data, and
an additional recorder to allow one failure without
degradation of system performance). The SSA use charge may
be significantly lower if the recorders can be dumped to
exploit the TDRSS "as available" rates.

No need for downlinking large quantities of
unprocessed data have been identified: if such a need does
arise, a store-and-dump mode utilizing the KuSA service will
need to be considered. The limiting factor in this instance
will be the tape recorder dump rate. The Spacelab High Data
Rate Recorder (HDRR) could be used; its maximum dump rate of
32 Mbps would result in a KuSA utilization rate of about 7%.
At a charge of $5,000/hr, the resulting use charge for a
three-year mission is $9.2 M. The cost of the Ku-band com-
munications equipment and adaptation of the HDRRs would
likely equal or exceed this figure.

IV.B.3. CDMS CONCEPT

Figure IV.B-5 illustrates the basic CDMS concept
for the doppler lidar wind measuring spacecraft. Since a
nominal 3-years mission is appropriate for a free-flying
spacecraft, redundant hardware has been provided. The A/D
converters and the preprocessor are "special purpose" items
and will probably not be considered a part of the CDMS.

For routine operations, the preprocessor reduces
the 1.15 Mbps stream of amplitude and phase data to a rate
between 14 and 48 kbps; this preprocessed data is multiplexed
with telescope and spacecraft navigation and housekeeping
data to form a stream of no more than 50 kbps. This final
stream is either recorded for later playback or downlinked
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through the TDRSS MA channel. The MA service utilization
capability is intended to satisfy currently unanticipated
needs and to provide a means of circumventing tape recorder
problems/failures. Normally, a full recorder is dumped at
2.5 Mbps while another is recording. One of the recorders
can fail with no effect. After the second recorder failure,
no data can be recorded while the survivor is in the dump
mode - about 2% of the time if data is recorded at 50 kbps.

A secondary mode routes unprocessed amplitude
and phase data, augmented by telescope and spacecraft naviga-
tion data, through the TDRSS SSA in near-real-time. Such
data would not be transmitted while in the TDRSS dead zone.
In this mode, the preprocessor also acts as a multiplexer.

Figure IV.B-6 1is the equipment 1list for the
CDMS. The totals for mass and power, conservatively esti-
mated, are 68 kg a=d 187 watts. If a mission profile were
run, the total power to support the CDMS would be less. For
instance, one transponder was considered to be on and trans-
mitting at all times, which would not be the case for a
store-and-dump mode. The conservatism should have 1little
effect on the overall spacecraft, as the CDMS power require-
ment is less than 10% of the power needed for the mission
eguipment.

Iv.C. ATTITUDE CONTROL AND DETERMINATION
Iv.C.1l. ATTITUDE CONTROL REQUIREMENTS

Two distinct sets of attitude control
requirements flow from the mission objectives.

For large-area wind estimation, the telescope
scanning mechanism provide one element of beam pointing; the
attitude control functions are then to

o align the telescope scan axis (nominally
the spacecraft =z-axis) with the local
vertical {The spacecraft coordinate
system is illustrated in Figure IV.C-1)
and

o] roll the spacecraft about the z-axis to
orient the radiators and solar arrays.

Radiator and solar array orientation is rela-
tively undemanding: with the C-pacecraft z-axis aligned with
the local vertical, the spacecraft is rolled until the sun is
in the plane of the radiators (i.e., the yz-plane), Normally
prudent design practice will oversize the radiators to allow
1-3 degrees of misorientation (in any axis). This roll
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FIGURETM. C-1 SPACECRAFT COORDINATE SYSTEM

TELESCOPE
ST \N AXIS

FIGURE IV. C-2
LOCAL VERTICAL MISALIGNMENT GEOMETRY

SPACECRAFT POSITION
NADIR POINT
SPACECRAFT ALTITUDE
SCAN ANGLE

PULSE IMPACT POINT WITH NO
LOCAL VERTICAL MISALIGNMENT ERROR

ALLOWABLE MISS DISTANCE

PULSE IMPACT POINTS ON GREAT
CIRCLE Ni HAVING MISS DISTANCES AS

ASSOCIATED LOCAL VERTICAL
MISALIGNMENT ERROR
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maneuver also orients the solar arrays: the rotational
capability (beta-angle compensating) provided for *these will
then maximize the output power. Again, a misorientation of
1-3 degrees will have no significant effect.

No firm requirement for the alignment error of
the z-axis and local vertical has been derived from the large
area wind measurement objective. Obviously, the error should
not be so great that some of the lidar pulses miss the Earth
entirely. This consideration leads to an upper bound of 5-10
degrees for the allowable error. A tighter bound will be
necessary, for the return signal from pnlses which reach the
horizon will have too low a cignal-to-noise ratio to be use-
ful (at least at the lower altitudes).

A tentative criterion for the alignment error
can be based on the observation that the reference pulse rate
and scan rate imply an "average" Earth surface sample area of
about 50 km x 50 km. This suggests that each pulse should
strike the surface within 25 km of the point it would strike
if there were no error. Figure IV.C-2 illustrates the geome-
try. If the allowable miss distance is 25 km, the corres-
ponding allowable angular misalignment is 5 mrad at a space-
craft altitude of 800 km, 3.9 mrad at 550 km. A constant, or
slowly varying, error of this magnitude may not be important,
depending on the orientation of the error. For example,
referring to Figure IV.C-2, suppose the spacecraft velocity
vector is in the plane of the paper, directed to the right.
The error then lies in the orbital plane, and the effect is
to shift the scan pattern forward or backward along the
ground track. On the other hand, suppose the velocity vector
is perpendicular to the plane of the paper. The error is now
normal to the orbital plane, and the effect is to shift the
ground track left or right. The effect of the pattern shift
of this magnitude along the ground track poses no problems in
itself; the same is true of a crosstrack shift so long as no
large coverage gaps are introduced. The overlapping of
coverage swaths away from the equator suggests that a con-
stant or slowly -varying crosstrack local vertical alignment
errvror of 4-10 mrad is tolerable.

A fi-ther tightening of the 1local vertical
alignment error requirement may arise from consideration of
the lag angle miscompensation resulting from the error. This
miscompensation will likely be dependent on the design of the
lag angle compensator/beam steering subsystem. In any event,
the resulting error will reduce the SNR of the return.

As noted in Section I.C., the requirements for
the second mission objective (i.e., a capability for inten-
sive local observation) are poorly defined at this point,
with ground truthing and localized meterological phenomena
being the obvious considerations. The technique cucrently
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envisioned for realizing this objective entails halting the
telescope scan, locking the telescope, discontinuing lag
angle compensation, and pointing the telescope axis at an
atmospheric targic by using the attitude control system. The
definition of the 10 km horizontal resolution (i.e., 10 km x
10 km surface-level target) mentioned in the WPL-37 and -63
reports seems to have been chosen with "ground truthing" in
mind: such a target might be reasonably studied by ground-
based, balloon-, and aircraft-borne sensors, and the results
compared to observations from space.

There are some obvious p:ints to be considered
in connection with localized observations. If the atmospher-
ic volume to be observed is small (a few tens of kilometers)
and located in the orbital plane, the crosstrack cumporent of
the wind cannot be measured reliably. If the volume is not
in the orbital plane, and the angle between the local verti-
cal from the spacecraft and the spacecraft-to-target line-of-
sight is greater than the operational scan aryle, then the
SNR will be reduced, with accompanying reduction in wind
measuring accuracy. Also, a given small atmosphere target
will not be viewable "on demand": if located at the ejuator,
as much as twelve hours could elapse between viewing oppor-
tunities (assuming a single spacecraft).

To avoid having t'.is secondary mission objective
become a design driver, furcher definition of observational
needs is required, particularly considering the potential for
ground truthing by inference.

The WPL-27 report discusses a pointing jitter
requirement of 2 srad/5 msec - which would permit efficient
heterodyning, by ensuring overlap of the transmitter and
receiver fields of view. The 5 msec here is intended to be
representative of the pulse roundtrip time, and the Z,Arad is
to include errors cdve to structural vibrations, 1lag--angle
miscompensation, and scan mirror jitter. Although a require-
ment of this order is considered achievable, the detailed
structural analysis needed for verification is beyond the
scope of this assessment activity.

Iv.C.2. ATTITUDE DETERMINATION REQUIREMENTS

Knowledge of spacecraft attitude and positition is
required for control purposes (e.g., to calculate the orien-
tation of the local vertical in spacecraft coordinates), for
gross doppler removal via the frequency synthesizer, and for
vector resolution of the horizontal wind. The allowable un-
certainty in local vertical alignment corresponding to a hor-
izontal wind uncertainty AW is given by the approximation
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E = tanol

AW
Ve
where V. is he orbital velocity and o is the scan angle.
For AW=1 m/s and atmospheric coverage at 550 km altitude,
E®R 220 /urad. At 800 km altitude, E® 300 pmrad.

The gross doppler induced by spacecraft - Earth
motion will also depend on the beam azimuth relative to the
spacecraft velocity vector, according to

D=2Vs cos g
A

whence

AD giyc A;‘

for g = 90° - i.e., the sensitivity to the gross doppler
error is greatest when the firing direction is at right angle
tc the ground track. At 800 km altitude, the uncertainty
Ap corresponding to a 220 kHz doppler uncertainty (1 m/s wind)
is 130 grad.

Iv.c.3. ACDS CONCEPT

Figure IV.C-3 illustrates the concept. A system
of biased reaction wheels is used to cancel the momenteum of
the rotating telescope, and the resulting zero-momenteum
system rotates inertially once per orbit to maintain the
telescope scan axis along the local vertical. The reaction
wheels also provide the torques to control attitude excur-
sions. The magnetic torquers react against the Earth's mag-
netic field for momenteum desaturation of the wheels. This
field can be sensed by the magnetometers, or calculated. The
sun sensor is used to define the relationship of the radia-
ters to the sun.

Two-axis star trackers placed on the anti-sun of
the spacecraft permit freguent updating of the DRIRU-II
reference gyro assembly which serves as the primary attitude
reference. The attitude information is combined in the digi-
tal processor assembly (DPA) with position and velocity
information derived from the global positioning system (GPS)
to calculate the orientation of the local vertical in space-
craft coordinates. The DPA then issuves commands to the
reaction wheels to align the spacecraft scan axis with the
local vertical.

Figure IV.C-4 defines the ACDS mass and power
requirements.
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V. MISSION OPERATIONS AND PERFORMANCE
V.A WIND ACCURACY REQUIREMENT: ORBIT SELECTION

Consideration of WPL-37 and ~63 yields the fol-
lowing conclusions:

o] The sensitivity of achievable wind accuracy to
orbital altitude and inclination has not been
established.

o This sensitivity is dependent, probably in a
vital manner, on atmospheric attenuation and
backscatter.

Additionally, whereas prior analyses have consistently con-
sidered an 800 km, high-inclination operational orbit

o Simplified analyses indicate that lower orbital
altitudes and inclinations may be possible with-
out important degradation of wind measurement
accuracy; some enhancement may be possible.

o Future trade studies of orbital altitude and in-
clination versus wind accuracy should be based
on simulations of the type described in the WPL
reports. Even with such an approach, definite
conclusions may be difficult to achieve, due to
the uncertainties introduced by imperfectly
understood atmospheric phenomena, particularly
backscatter.

The remainder of this section interprets wind
accuracy as a system figure of merit and traces its (concept-
ually straightforward) relationship to orbital altitude and
inclination. Also, a sun-synchronous and a 57 degree orbital
inclination are compared, using various simplifications.

The primary function of the proposed doppler
lidar wind measuring system is that of estimating the mean
(= average) wind in an atmospheric volume called a resolution
element - typically, a horizontal "slab" 1 km deep and 100-
500 km on a side. 'This is done by calculating a (suitably
weighted) average of the estimates from a number of pulses
(shots) directed into the resolution element from different
points along the orbit. From theory, the error in the esti-
mate of the average should decrease as the number of shots is
increased, i.e.,

ﬁ;3°c VW~
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where

vhvg = gtandard deviation of the wind estimate

{(m/s)

o = standard deviation of the estimate of a
single shot (m/s)

N number of shots

1

The wind accuracy requirement is then expressed as a required
value of Tavg - There are two approaches to satisfying
the requirement: increase the number of shots, or decrease
. The improvement by the first approach must ultimately
reach a rractical limit, imposed by the available power:
note that halving the error OLy requires a quadru-
pling of the number of shots, and this translates directly
into a quadrupling of power.

To understand what is involved in decreasing 0,
consider in its place a typical formula for the standard
deviation of the radial wind estimate:

| v/2
o = [2«22(_, 2e _____._)]
where r 2t \49vw SN Rw 8'nerNR‘"
A = doppler-shifted laser wavelength (m)

rms velocity width of received spectrum (m/s)

Oy

T pulse duration (s)

L = 5 /2 Vpax where

¥, = maximum velocity to be measured (m/s)
SNRy= wideband signal-to-noise ratio = 4Z7 s SNR

Figure V.A-l1, taken from the WPL-63 report, illustrates the
variation in the pulse-derived wind accuracy, 0p , as a
function of the signal-to-noise ratio. Figure V.A-2, also
taken from WPL-63, carries this one step further, and sug-
gests that the wind measurement accuracy is relatively insen-
sitive to the 3NR. However (and as noted), this insensitiv-
ity depends upon a number of assumptions, particularly the
backscatter profile: the predicted insensitivity is there-
fore suspect.

If the atmosphere is assumed to he a homogeneous
shell of 20 km depth, with an attenuation coefficient of .002
m~l and a backscatter coefficient 8 = 3 x 1078
m-l.sr-1l, a simplified SNR expression is
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FIGURE Y. A-1

WIND ACCURACY VARIATION WITH SNR
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FIGURE M. A-2
WIND ACCURACY SENSITIVITY TO SIGNAL-TO-NOISE RATIO
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AID = Atmospheric interaction distance, i.e., distance
from ground to top of the atmosphere, along the
beam

where

TSR = total slant range, i.e., distance from ground
to spacecraft, along the beam

Figure V.A-3 displays two sets of SNR curves, one set corre-
sponding to a sun-synchronous orbital inclination; the other,
corresponding to a 57 degree inclination. 1In both cases, the
SNR was calculated for the return from the bottom kilometer
of the atmosphere, the scan angle was selected to provide
contiguous swaths at a height of 20 km at the equator, and
the attenuation coefficient was varied by + 50% to indicate
sensitivity.

The first conclusion to be drawn from Figure
V.A-3 is that there is an optimum orbital altitude lying be-
tween 400 and 600 km, In fact, while an optimum altitude
does exist, more detailed —calculations accounting for
altitude-varying attenuation and backscatter suggest that the
optimum may lie above 800 km. However, the variation of the
SNR with altitude in the range 500-800 km appears to be less
than 3 db, according to these more refined calculations.

The second obvious conclusion is that the SNR is
about 2 db greater at the 57 degree inclination than at the
sun-synchronous inclination. This has so far been borne out
by the more detailed calculations. More extensive and de-
tailed analyses are needed for confirmation; these must carry
the SNR results on into the wind accuracy calculation, and
account for the various model atmospheres.

V.B. SHUTTLE PERFORMANCE: DESIGN AND OPERATIONAL
IMPLICATIONS

Straightforward use of the Shuttle requires
placing the doppler lidar wind-measuring spacecraft into its
operational orbit and revisiting the spacecraft for retrieval
or for servicing and orbital reboost. No other launch
vehicle is likely to be available. The basic Shuttle capa-
bilities are inadequate for the orbital altitudes and incli-
nations of interest (inclination 57 deg, altitude 500
km) .The possibilities for achieving these orbits are

o OMS kits

o Shuttle augmentation

L3
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FIGURE I A-3
COMPARISON OF ORBITAL ALTITUDES AND INCLINATIONS
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o Future upper stages
o} Integral propulsion

Figure V.B-1 describes the current Shuttle
performance capabilities (JSC 07700, Vol. XIV, Rev. G) for a
VAFB launch to a 98 deg-inclination. Even with OMS kits the
performance capability is quite limited,. Shuttle augmenta-
tion provides some relief: Figure V.B-2 is one (unofficial)
projection of augmented Shuttle performance capabilities.
Even with augmentation, OMS kits are required, and the maxi-
mum achievable altitude is only about 680 km.

The current official Shuttle performance projec-
tion for a KSC launch does not address inclinations other
than 28 deg. Thus, an earlier (again, unofficial) perfor-
mance projection, given by Figure V.B-3, was consulted. With
this projection, the operational spacecraft can be delivered
(using OMS kits) to a 57 deqg orbit, to an altitude in excess
of 800 km, with a considerable performance margin.

Since the Shuttle/OMS kits capabilities to a 57
degree orbital inclination permit a simpler spacecraft de-
sign, this should be considered a desirable inclination,
subject to coverage and accuracy considerations. The results
of this assessment indicate a minor, perhaps even favorable,
accuracy effect, as ccmpared tc the 800 km orbit considered
by NOAA/WPL. Coverage necessarily suffers: with a scan
angle selected for a vertical range of 20 km, there is no
coverage within about 22 deg of either pole. The impact of
this loss of coverage on global prediction models has not
been assessed.
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APPROVAL

ACCOMMODATIONS ASSESSMENT :
SPACEBORNE DOPPLER LIDAR
WIND MEASURING SYSTEM

The information in this report has been reviewed for security
classification. Review of any information concerning Department
of Defense or Atomic Energy Commission programs has been made
by the MSFC Security Classification Officer. This report, in its
entirety, has been determined to be unclassified.

This document has also been reviewed and approved for techni-
cal accuracy.
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CHARLES R. DARWIN
Director, Preliminary Design Office

WILLIAM R. MARSHALL
Director, Program Development
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